叶方明:“……哪来那么多小明?”
“喵,人家只是小猫咪,不清楚啦。”
这位小明同学走在上学路上,低着头思索。
如果用二分法的话,假设毒水在前五是杯水中,前二十五杯水中……
不对,启不可能会出这么简单的题目。
绝对有其他方法。
“赶紧的,都快走到学校了。”启催促道。
“都是我教过的知识点,怎么还没反应过来?”
“等等,我心算当然需要点时间。”
叶方明想到一个方法。
正是前几天启给他讲的计算机知识。
在二进制中,一到一百的表示分别是,oooooo1,ooooo1o,ooooo11……,
用o代表无毒,用1代表有毒。
将编码中【所有第一位是1的数字的水杯组】喂给一号小明。
【所有第二位是1的的水杯】喂给二号小明。
一共有七组,以此类推。
那如果一号小明死了,那毒药就在【所有第一位是1的水杯组】里。
二号小明死了,那毒药就在【所有第二位是1的水杯组】里。
同理,与之相反,假如一号小明没有死,那就证明毒水瓶的编码第一位不是1,而是o。
以此类推,通过七个小明的死活,就能判断出毒水瓶的编码,在转化成十进制,就知道是第几瓶了。
如果现四号、六号小明全都死了,其他小明都活着。
那毒水,就应该是ooo1o1o这一杯水里。转化成十进制就是1o。
“答案是7。”叶方明笃定的说道。
顺便把原因给启解释了一遍。
启瞟了他一眼,眼神复杂。
“你想的太复杂了吧?”
“嗯?”叶方明反问,“还有更简便的方法吗?”
“你一个人去喝,喝到哪杯死了,就算哪杯的。”
“……”
“最短时间内确实是七个,但我又没有设置时间限制。”
意思就是,你爱喝到什么时候,就喝到什么时候。
喝死算了。
叶方明手一松,故意将启扔在了地上,快步走远。
启背上的毛都炸了起来,四只爪子快奔跑,扑在叶方明的大腿上。
他脚下一个踉跄,语气十分疑惑,“这是谁家的猫?”
好家伙,就这么无情。